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Thermoelectric (TE) devices convert heat energy directly into electricity, which requires highly efficient,
eco-friendly, and reliable materials. The chalcopyrite compound zinc tin antimonide (ZnSnSb2) is a
promising thermoelectric material that has high electrical conductivity, non-toxic, low cost, and plenty
in nature. The ZnSnSb2was synthesized by simple one-step Solid-State Reaction (SSR) and studied their
microstructural and electronic transport properties. The X-Ray Diffraction (XRD) pattern of the
ZnSnSb2 exhibited a tetragonal crystal structure with c

a ratio of 2 that indicates the valance band was
degenerate, which was the reason for the low electrical resistivity of ZnSnSb2 (0.32 mX-cm at 325 K).
Furthermore, the thermopower exhibited p-type behaviour and the maximum power factor ZnSnSb2

was found 39 mW/m-K2 at 542 K.
� 2021 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the Indo-UK International
Virtual Conference on Advanced Nanomaterials for Energy and Environmental Applications (ICANEE-
2020).
1. Introduction

TE devices are working under the principle of the Seebeck effect,
which converts heat flux directly into electricity [1]. Thermoelec-
tric devices are noise-free, high life span, eco-friendly, etc. The heat
conversion efficiency of the thermoelectric materials calculated
from the dimensionless figure of merit zT = S2T/qj, where q is
electrical resistivity; S- is the thermopower; T is the absolute tem-
perature and j is total thermal conductivity, which can be written
as j = jL + je [2], where jLandje are the lattice and electronic ther-
mal conductivities respectively. The good TE material exhibits high
power factor (P.F = rS2) and low jL. The Wiedemann-Frantz law
gives the relation between the r and je, which is je = LrT, where
L-is the Lorentz number. Telluride (Bi2Te3, PbTe), zintl (Mg3Sb2,
Mg3Bi2), oxide (In2SnO3, TiO2) metal Chalcogenides (CuS, SnSe)
based materials are mostly used for TE application [3–8]. For the
commercialization of thermoelectric material, zT � 1 is considered
as standard [9]. However, their commercialization is restricted by
toxic, expensive materials, and low efficiency [10]. Chalcopyrite
is a promising material for TE application due to its high electrical
conductivity and low kL. Tellurium-based chalcopyrite materials
such as CuGaTe2, AgGaTe2, and CuInTe2 show high P.F and low
kL. Ken Kurosaki et al. [11]reported the CuGaTe2 has the highest
power factor of 13.5 mW/cmK2 and the corresponding and zT is
1.4 at 950 K. Ruiheng Liu et al. [12]reported p-type CuInTe2, it
has a high zT value of 1.18 at 850 K. Aikebaier Yusufu et al. [13]
reported that the reduction of Ag (x = 0, 0.01, 0.03, 0.05, and
0.07) simultaneously decrease the resistivity and thermopower in
Ag1-xGaTe2 (x = 0.05) and showed a high zT of 0.77 at 850 K with
the maximum P.F of 3.3 mW/cmK2 at 700 K. Moreover the Ag lattice
defect increase the phonon scattering leads the reduction of kL.
However, these Chalcopyrite materials contain scarce, more expen-
sive and toxic elements; ZnSnSb2 is the promising material for TE
application with eco-friendly, non-toxic, inexpensive, and abun-
dant in nature [9]. It has expected that the ZnSnSb2 has high elec-
trical conductivity due to the tetragonal crystal structure with c/
a = 2 increases the symmetry of the crystal that leads to band con-
vergence [14], and also we expect low lattice thermal conductivity
due to the presence of heavy elements such as Sn and Sb [15]. This
work investigated the electronic transport properties, namely,
electrical resistivity, thermopower (S), and power factor (S2r) of
ZnSnSb2.
ergy and
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Fig. 1. (a) Sintered; (b) cut and polished pellet of ZnSnSb2.
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2. Materials and methods

2.1. Preparation of ZnSnSb2

The measured starting materials: Zinc (Zn, Purity 99.9%), Tin
(Sn, Purity 99.80%), and Antimony (Sb, Purity 99.5%) were mixed
and ground homogeneously and subjected to cold-pressed by
applying 63 MPa of pressure. The resulting pellet (2.5 mm
thick � 14 mm in diameter) was transferred to a 16 mm diameter
Pyrex tube, which was evacuated by rotary and diffusion pump to
3́ �10-5 Torr and then sealed. The sealed Pyrex tube was trans-
ferred into the box furnace, heated up to 853 K for 6 h, and cooled
down to room temperature naturally. The obtained ingot was
crushed and ground manually for further use, cold-pressed into a
pellet at 159 MPa. The resulting pellet was evacuated and sealed
using a rotary and diffusion pump. The sealed Pyrex tube was sin-
tered at 573 K for 6 h and naturally cooled down to room temper-
ature. To study the TE properties of the pellet, which was cut and
polished by diamond saw cutter and sandpaper, respectively.
2.2. Sample characterization

The powder XRD patterns of prepared materials were obtained
using the Shimadzu diffractometer � 6000 (with Fe Ka target) from
10� to 90� in steps of 0.02�. Temperature dependence electrical
resistivity and thermopower were measured by Setsram See-
beckPro systems simultaneously between 325 and 550 K in steps
of 25 K. The electrical resistivity and thermopower error is about
±10 and ±7%, respectively. The pellet was cut and polished into
the suitable dimension of length � breath � width
Fig. 2. (a) XRD pattern of ZnSnSb2 and (b) Te
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11 mm � 2 mm � 2 mm for TE measurement. Fig. 1 shows the
image of (a). sintered and (b). cut and polished pellet.
3. Results and discussion

The ZnSnSb2 was synthesized using a simple one-step SSR
method and evaluated its TE properties from 300 to 550 K. Fig. 2
(a). shows the XRD pattern all the peaks 30.82, 36.51, 51.57,
61.38, 76.01, and 84,30 matches with the JCPDS card no 00–051-
0882 and the corresponding planes are (112), (200), (204),
(312), (400) and (316) respectively, confirmed the tetragonal
crystal structure of chalcopyrite ZnSnSb2 with the space group of
I-42d (122). The low intense peak arises due to the presence of
SnSb and ZnSb [15]. The lattice constant of the tetragonal ZnSnSb2

were calculated a = b = 6.277 Å, c = 12.554 Å and c/a ratio is 2.0 and
are well-matched with the reported values [9]. From Debye-
Scherer’s formula, (D = kk / b cosh) the crystallite size was calcu-
lated was 73.14 nm.

The temperature dependence of the q,S and power factor

ðP:F ¼ S2

q Þ of the sample ZnSnSb2 are summarized in Fig. 3. As

shown in Fig. 3(a), the q of the sample increased with increasing
temperature, indicating the semi metallic or degenerate semicon-
ductor behaviour [15].

The q values are very small, which is less than 0.5 mX-cm.
Between 300 and 550 K; the electrical resistivity varies little with
temperature from 0.32 to 0.41 mX-cm, respectively. The compar-
ison of synthesis method and electrical resistivity of tetragonal
chalcopyrites are presented in Table 1. The thermopower showed
in Fig. 3(b), the value is positive, which indicates that most charge
carriers are holes in ZnSnSb2 and reveal the P-type conduction. The
magnitude is increased with an increase in temperature. The tem-
perature dependence thermopower increased significantly and
correlated with Mott’s equation. The thermopower of degenerate
semiconductors writes using Motts Eq. (1) [16]

S ¼ p2K2
BT

3q
d lnrðEÞ

dE
E ¼ EFj / � T

Ntot Eð Þ
dNtot Eð Þ

dE
E ¼ EFj ð1Þ

where KB is the Boltzmann constant, q is the elementary electric
charge, r (E) is the electrical conductivity and Ntot Eð Þ is the value
of density of states (DOS), respectively. From S and q the calculated
power factor (P.F) showed in Fig. 3(c). The calculated P.F of the pre-
pared ZnSnSb2 increases with function temperature. The ZnSnSb2
tragonal Chalcopyrite crystal structure.



Table 1
Comparison synthesize method and electrical resistivity of tetragonal Chalcopyrites.

Materials Synthesize Method Electrical Resistivity Ref.

CuInTe2 Vacuum melting at 1173 K for 10 h and Spark Plasma Sintering (SPS) at 873 K for 5–10 mins 6.9 mX-cm @ 300 K [12]
CuGaTe2 Vacuum melting at 1173 K for 12 h and annealed at 773 K for 3 days, hot pressing at 873 K for 3 h 4.41 mX-cm @ 950 K [11]
AgGaTe2 Vacuum melting at 1273 K for 24 h and hot pressing at 773 K for 2 h �80 mX-cm@ 750 K [13]
ZnSnSb2 Vacuum melting at 923 K for 12 h 0.3 mX-cm @ 300 K [15]
ZnSnSb2 Vacuum melting at 923 K for 12 h and annealed at 533 K for 24 h, SPS at 453for 15 mins �0.6 mX-cm@ 300 K [9]
ZnSnSb2 Vacuum melting at 853 K for 6 h and sintered at 573 K for 6 h 0.32 mX-cm @ 325 K Present work

Fig. 3. Temperature dependence electric transport properties of ZnSnSb2; (a) electrical resistivity, (b) thermopower and (c) Power factor.
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exhibited the maximum power factor of 39 mW/m-K2 at 542 K. From
the results, the ZnSnSb2 exhibits low thermopower and P.F values,
so the ZnSnSb2 is the poor TE material for the power generation
application. The q is ultralow at room temperature, so further opti-
mization in the composition and thermopower is needed for power
generation application.
4. Conclusion

The ZnSnSb2 was synthesized by a simple one-step SSR method;
ZnSnSb2 exhibits the tetragonal structure. From the temperature-
dependent electrical studies, the ZnsnSb2 shows the ultra-low
resistivity of 0.32 mX-cm at 325 K. The resistivity is less than
0.5 mX-cm throughout the whole temperature range. The maxi-
mum power factor of 39 mW/m-K2 was observed at 542 K. How-
ever, the thermopower and power factor are pretty low. Further
2763
optimization is required to improve the thermopower and power
factor of ZnSnSb2 for power generation application.
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