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Concept Drift Detection and Adaption in Big 

Imbalance Industrial IoT Data Using an Ensemble 

Learning Method of Offline Classifiers 

中文摘要 

 

在智慧工廠中，數以千計的工業物聯網 (IIoT) 設備或傳感器安裝在生產機器中，以收集機器狀況

的大數據並將其傳輸到雲端的網宇實體系統。該系統採用多種基於狀態維護（CBM）的方法來預測

機器開始異常運行的時間點，並提前對其進行維護或更換零件，以避免製造出龐大的瑕疵產品。

CBM 存在概念漂移（故障模式的分佈可能隨時間變化）和不平衡資料（有故障的資料佔所有資料的

一小部分）的問題。集成多個分類器多樣性的集成學習為解決這些問題提供了一種高性能的解決方

案。在實際應用中，大多數公司可能沒有足夠的預算來建立完善的基礎設施來支持實時在線分類器，

但可能在其現有系統中擁有現成的離線分類器。然而，大多數以前的集成學習工作只專注於支持在

線分類器。因此，本研究提出了一種集成學習演算法，該演算法支持離線分類器來處理具有概念漂

移和不平衡資料的三個階段 CBM，其中階段一（訓練集成分類器）和階段三（創建新集成）採用改

良式的動態 AdaBoost .NC 分類器和 SMOTE 方法來處理不平衡資料；階段二（檢測不平衡數據中的

概念漂移）採用改良式的 LFR（線性四速率）方法。在不同程度不平衡資料集上的實驗結果表明，

該方法能夠成功檢測出所有的概念漂移，檢測少數類數據的準確率高達 94%以上。 

 

關鍵詞：集成學習、不平衡資料、概念漂移、資料適應、智慧製造、工業 4.0、物聯網 
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Abstract 

In a smart factory, thousands of industrial Internet of Things (IIoT) devices or sensors are installed in 

production machines to collect big data on machine conditions and transmit it to a cyber-physical system in 

the cloud center. Then, the system employs a variety of condition-based maintenance (CBM) methods to predict 

the time point when machines start to be operated abnormally and to maintain them or replace their 

components in advance so as to avoid manufacturing enormous detective products. CBM suffers from problems 

of concept drifts (i.e., the distribution of fault patterns may change over time) and imbalance data (i.e., the 

data with faults accounts for a minority of all data). Ensemble learning that integrates diversity of multiple 

classifiers provides a high-performance solution to address these problems. In practice, most companies may 

not have a sufficient budget to establish a sound infrastructure to support real-time online classifiers, but may 

have off-the-shelf offline classifiers in their existing systems. However, most previous works on ensemble 

learning only focused on supporting online classifiers. Consequently, this work proposes an ensemble learning 

algorithm that supports offline classifiers to cope with three-stage CBM with concept drifts and imbalance 

data, in which Stages 1 (training an ensemble classifier) and 3 (creating a new ensemble) employ an improved 

Dynamic AdaBoost.NC classifier and the SMOTE method to address imbalance data; and Stage 2 (detecting 

concept drifts in imbalance data) employs an improved LFR (Linear Four Rates) method. Experimental results 

on datasets with different degrees of imbalance show that the proposed method can successfully detect all 

concept drifts, and has a high accuracy rate in detecting minority-class data, which is over 94%. 
 

 

Index Terms—Ensemble learning, Imbalance data, concept drift, data adaption, smart manufacturing, Industry 

4.0, Internet-of-Thing 
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I. INTRODUCTION 

The industrial Internet of Things (IIoT) has been driving development and advances of smart manufacturing 

and Industry 4.0 [1], from conventional manufacturing to smart manufacturing. More and more IIoT 

technologies and facilities are incorporated into manufacturing factories. Generally, a large number of IIoT 

devices or sensors are attached to machines in the factory. Enormous machine conditions are collected 

continuously and in time, and are uploaded to the cloud center of the factory, in which production managers 

can adopt cyber-physical systems to control all operations of each machine ideally in real time. 

 

In practice, machine components get aging over time. If they were not replaced in time, enormous defective 

or low-quality products would be manufactured, and machines would perform abnormally or be damaged. 

Therefore, condition-based maintenance (CBM) is to analyze conditions of machine components collected by 

IIoT devices or sensors to predict the time when they start to perform abnormally and to replace them in 

advance. Since customers have continuously requested higher product quality, manufacturing factories need to 

take more attention on improving product quality by CBM. However, development of CBM in real factories 

has been increasingly challenging because it requires to consider concept drifts and imbalance data. 

 

Distribution of fault patterns in the collected data forms a concept. However, when machine components get 

aging or were maintained/replaced, the concept of fault patterns changes to be with different features, so that 

the CBM method without adaption to this new concept performs worse. On the other hand, with rapid advances 

in manufacturing technologies, machines become much precise and make rare faults. Hence, the amount of 

fault data points (called the minority class) is rare as compared to that of normal data points (called the majority 

class). Such an imbalance data distribution makes it difficult to classify faults. 

 

To concurrently address the classification problems with concept drifts and imbalance data, most previous 

works focused on online ensemble learning, e.g., [2], [3], [4], which integrates diversity of multiple online 

classifiers to address these problems. However, online learning is much suitable for real-time systems, which 

require support of advanced infrastructures that cost a lot. Additionally, most online classifiers are simple 

models or can only train a small amount of data, so that a large amount of data is not considered in a total. In 

practice, companies have off-the-shelf offline classifiers according to existing infrastructures of their factories. 

It would be convenient for them to design an ensemble learning method based on offline classifiers. 

 

To the best of our understanding, no previous works proposed an ensemble learning methods based on offline 

classifiers to address concept drifts and imbalance data concurrently. Therefore, this work proposes an 

ensemble learning method called dynamic AdaBoost.NC with multiple subclassifiers for imbalance and drifts 

(DAMSID) for coping with CBM with concept drifts and imbalance data. The work in [2] proposed a three-

stage online ensemble learning framework based on diversity for dealing with drifts (called DDD) to address 

concept drifts: ensemble learning, concept drift detection, and drift adaptation. Following the three-stage DDD 

framework, the proposed DAMSID improves the ensemble learning methods used at Stages 1 and 3 with an 

offline ensemble learning method called Dynamic AdaBoost.NC [5] and SMOTE (Synthetic Minority 

Oversampling TEchnique) and improves the drift detection method at Stage 2 with the LFR (Linear Four Rates) 

method [6] to address concept drifts in imbalance data. By simulation on the datasets with four degrees of 

imbalance data, performance of the proposed DAMSID is evaluated.  

 

The contributions of this work are as follows: The proposed DAMSID provides an ensemble learning method 

based on offline classifiers to address the CBM with concept drifts and imbalance data, in which the main 
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components (Dynamic AdaBoost.NC and LFR) are improved and adjusted to solve the problem. Because most 

companies have off-the-self offline classifiers based on existing infrastructures, they can apply the proposed 

method with no need to invest in more facilities. 

 

II. RELATED WORK 

A. CBM 

The major factors that affect variation of machines are from a lot of complicated machine control 

components, which are in charge of controlling quantity of physical property (e.g., pressure and temperature) 

or quantity of chemicals (e.g., those added to production processes) during manufacturing products. In practice, 

control components are aging as their usage time increases. If they are not maintained or replaced in time, the 

machines manufactures enormous defective products, and more seriously, they are broken. Therefore, CBM is 

to predict the time when the control components attached to machines perform abnormally, and to replace them 

in advance. 

 

Generally, production managers are based on their domain knowledge and previous experiences to judge the 

time when a control component performs abnormally, but the judgement may not always be precise. If the 

judged time is earlier (i.e., the component still performs well but is replaced earlier), the cost of control 

components increases. If the judged time is too late (i.e., the component should be replaced but not in actual), 

the machine could be malfunctioned. Conventionally, CBM methods have been developed based on statistics 

theory, e.g., regression analysis [7], time series [8], and data mining [9]. These methods were based on 

historical observations to search for a trend or pattern of the concerned problem, and then predicted the future 

event according to this trend or pattern. However, to achieve a high accuracy level, these methods require a 

large number of effective observations, and suppose them to follow a certain probability distribution (e.g., 

normal distribution and Poisson distribution). That is, only when the above two conditions were met, these 

methods performed well. 

 

On machine learning methods for CBM, Jardine et al. [10] reviewed a lot of methods based on artificial 

neural networks for CBM. Caesarendra et al. [11] proposed a CBM approach that integrates relevance vector 

machine (RVM) and logistic regression (LR) to predict the machine aging time. Patel et al. [12] applied the 

random forest (RF) classifier to detect multi-class mechanical faults in bearing of an induction motor. Lin et 

al. [13] proposed a novel hybrid grey forecasting and harmony search approach, in which grey forecasting was 

shown to perform well for small data samples. Wan et al. [14] proposed a big data solution for active preventive 

maintenance in manufacturing environments. 

 

B.Ensemble learning 

Ensemble learning is a supervised machine learning method [15]. The idea of ensemble learning is to 

consider a “committee” consisting of a number of “experts” (i.e., machine learning models), and to determine 

a final result according to a certain voting scheme of all the experts. Different from conventional forecasting 

methods that adopted only a single model to forecast, ensemble learning incorporates the forecast results from 

multiple models into a single forecast result. Some works showed that ensemble learning often performs better 

than any single forecasting model [16]. 

 

Ensemble learning was originated from [17], which adopted multiple classifiers to divide the feature space. 

Hansen and Salamon [18] proposed an ensemble learning algorithm similar to artificial neural networks, and 
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showed that it can increase performance of conventional classification methods in addressing classification 

problems. Schapire [19] proposed an ensemble learning algorithm based on boosting, and showed that it can 

effectively reduce the forecast error rate in solving binary classification problems, so that ensemble learning 

receives a lot of attention. Ensemble learning is suitable for the problems in which the data is of a huge scale 

and is hard to be computed, or in which the data samples are too small or hard to be obtained. The latter case 

can be addressed by bootstrapping [20]. In addition, for the classification problems for imbalance data, the 

amount of data samples in the minority class is increased by oversampling methods, e.g., SMOTE [21]. On the 

other hand, the amount of data samples in the majority class is decreased by undersampling methods, but 

undersampling methods have a drawback of losing partial information of the minority class [22]. 

 

C.Ensemble learning for concept drifts 

At a certain time point, consider a data instance in which each data points has a feature vector X and a class 

label y in the feature space. The joint distribution of these feature vectors and class labels is denoted by p(X, 

y), which is called a concept. A concept drift is the process in which the original joint distribution changes to 

a new joint distribution [2]. 

 

In practice, the environment of the time when to replace machine components changes dynamically over 

time, e.g., the environment changes when machine components are replaced or get aging. These local changes 

would change the whole machine environment, so that the concept changes. 

 

On the ensemble learning algorithms that address concept drifts, Minku and Yao [2] proposed an ensemble 

learning algorithm based on diversity for dealing with drifts called DDD. When a concept drift is detected, the 

DDD trains two new classifiers respectively based on the datasets with high and low diversities, and 

incorporates them with the two original classifiers respectively with high and low diversities to adapt to concept 

drifts. Kolter and Maloof [23] proposed a weighted voting scheme in ensemble learning, but their proposed 

method only solved online concept drift problems. Wang et al. [24] incorporated the concept of ensemble 

learning with multiple classifiers to address concept drifts, and their results showed that the proposed ensemble 

learning method performs better than the method using only one classifier in addressing concept drifts. Daniel 

et al. [25] proposed an algorithm which adopts the cosine similarity to compare whether two datasets belong 

to two different concepts. Wang et al. [26] proposed a method which detects faults through evaluating forecast 

error rates. Wang et al. [6] proposed a method called LFR to calculate changes of TP, TN, FP, and FN ratios 

in the confusion matrix to detect faults. Lin et al. [27] proposed an multi-classifier DDD based on the 

MapReduce framework, which adopts multiple classifiers and a dynamic adjustment scheme to construct an 

ensemble learning model for adaption to concept drifts. 

 

D.Ensemble learning for imbalance data 

With continuous advances in manufacturing technologies, machine components become increasingly 

precise. Hence, the amount of fault or abnormal data of machine components (i.e., minority class) is relatively 

much less than that of normal data (i.e., majority class) in long-run observation. Such an imbalance data 

problem has existed in a lot of real-world cases, e.g., credit card frauds, disease diagnosis, risk management, 

and fault detection in manufacturing productions. Most cases consider categorizing data into multiple classes. 

In a binary classification problem, data is divided into majority and minority classes, e.g., the probability that 

a machine manufactures a detective product could be less than 0.001%; the patients with a certain disease 

accounts for only 0.1% of healthy people. From the instances, the data from the minority class is generally 

important than that from the majority class. 
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Recently, imbalance data problems have received much attention, e.g., Ho et al. [28] and Rokach [29] 

emphasized that the methods based on only a single classifier cannot obtain precise results in addressing the 

data with multiple classes and much noise, and hence, they adopted ensemble learning methods with multiple 

classifiers to address imbalance data; Brown et al. [30] integrated multiple learning methods to increase the 

overall performance. 

 

Recently, ensemble learning algorithms based on AdaBoost (Adaptive Boosting) have attracted a lot of 

attention. Freund and Schapire [16] proposed an ensemble learning method based on AdaBoost to reduce the 

forecast error. Wang et al. [31] incorporated the AdaBoost method with negative correlation learning to 

establish a novel AdaBoost.NC forecast model, which performs better than pervious methods in addressing 

classification problems. Wang and Yao [5] established a Dynamic AdaBoost.NC forecast model, which adds 

a method of automatically adjusting the training parameters to the AdaBoost.NC method, to effectively reduce 

the training time and increase the overall performance. The latter two methods proposed in [31], [5] improved 

the AdaBoost method to address data imbalance problems. 

 

E.Ensemble learning for concept drifts and imbalance data 

To address both concept drifts and imbalance data, Ditzler and Polikar [32] proposed a novel method called 

Learn++.SMOTE, in which the Learn++.NSE method addresses concept drifts, and the SMOTE method 

addresses data imbalance. 

 

III. PROPOSED ENSEMBLE LEARNING METHOD 

A.DAMSID framework 

The DAMSID framework is based on the DDD [2] consisting of three stages: ensemble learning, drift 

detection, and drift adaption. In the DAMSID, Stage 1 adopts the Dynamic AdaBoost.NC ensemble learning 

method incorporated with the SMOTE method to address imbalance data; Stage 2 adopts the LFR to detect 

drifts; and Stage 3 adopts the Dynamic AdaBoost.NC ensemble learning method to create a new model to adapt 

to the detected concept drift. The three stages in the DAMSID are detailed as follows:  

 

1) Stage 1: Ensemble learning based on SMOTE and Dynamic AdaBoost.NC 

In imbalance data, the amounts of data points between different classes have remarkable differences. For 

example, Fig. 1 shows two classes of imbalance data, in which the amount of blue data points (majority class) 

is much more than that of red data points (minority class).  

 
Fig. 1: Illustration of imbalance data. 
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The proposed ensemble learning framework is shown in Fig. 2, which is based on the Dynamic 

AdaBoost.NC method that trains a sequence of weak classifiers and weight updates. At the beginning, the 

initial training dataset is either the initial dataset or the dataset collected after a concept drift. If the initial 

training dataset is the initial dataset, each data point in the training dataset is assigned to an equal weight 

initially, then a smaller dataset is randomly selected from the training dataset; otherwise, it is selected from the 

data points with larger weights. Then, the SMOTE method is adopted to oversample the data points in the 

minority class (i.e., the red data points in Fig. 2). Then, the new dataset is adopted to train the 1st weak classifier. 

Then, test whether this weak classifier performs accurately on the original training dataset, and use this forest 

result to update weight of each data point. Repeat the same procedure until T weak classifiers are trained. 

Finally, the T weak classifiers constitute a strong classifier whose output is a weighted sum of outputs of the T 

weak classifiers.  

 
Fig. 2: Flowchart of the proposed ensemble learning framework consisting of SMOTE and Dynamic 

AdaBoost.NC. 

 

In what follows, the SMOTE method and the Dynamic AdaBoost.NC method are detailed, respectively. 

 

In the application of detecting faults of machine components in manufacturing, the minority class is more 

important than the majority class, and it would be perfect if all the data points in the minority class are detected 

correctly. Before training the ensemble model, the SMOTE method (see Fig. 3) is employed to oversample the 

data points in the minority class. 
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Fig. 3: Illustration of the SMOTE method, in which F1 and F2 are two features of each data point. 

 

Key steps of the SMOTE method is as follows: 

Step 1.Randomly select a data point Xi from the minority class. 

Step 2.Calculate the distance between Xi and each of the other data points in the minority class. Select k  

data points in the minority class that are the closest to Xi. 

Step 3.Randomly select one of these k data points, say Yi. 

Step 4.Generate an artificial data point 
new

ix  at a random location on the line segment between Xi and Yi. 

Given a dataset, the Dynamic AdaBoost.NC employs a “sequential learning” method to sequentially train a 

number of classifiers, in which each data point has a “weight” to represent the degree of the attention taken to 

the later learning and a “penalty” to record the degree of forecast mistakes. Detailed steps of the proposed 

Dynamic AdaBoost.NC are as follows: 

1. Given a dataset {(x1, y1), …, (xi, yi), …, (xm, ym)} consisting of m data points, in which the ith data point 

has a feature vector xi and a class label yi, we initialize its weight D1(xi) = 1/m, penalty p1(xi) = 1, and 

penalty strength  to be a given parameter (set to 9 in [5]). That is, the initial weight, penalty, and  value 

of each data point are equal.  

2. Employ this dataset to sequentially train T subclassifiers as follows. Consider iteration number t =1, 2, …, 

T. 

a)  Based on weight distribution Dt to train a weak subclassifier ft: X  → R, in which R = {1, –1} (which 

represent positive and negative outcomes, respectively). 

b)  Calculate the penalty pt(xi) of each data point xi as follows: 

 
( ) 1 | ( ) |t i t ip x amb x= −  (1) 

 

where ambt(xi) is calculated as follows:  

 

01

1
( ) ( )

2

t

t i jj
amb x H f

t =
= −

 
(2) 

 

where H0 is the original strong classifier. 

c)  Calculate the weight t of subclassifier ft as follows: 
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where ht(xi) = 1 if the forecast result of xi is correct; otherwise, it is –1. 

d)  If Acc(ft)  Acc(ft–1), then  =  + 1; otherwise,   =  – 1. That is, we check whether the accuracy at this 

iteration is better than that at the previous iteration. If yes, λ increases by 1; otherwise, it decreases by 1. 

The Acc(ft) value is evaluated as follows:  

 
2 21 ((0 ) (1 ) ) / 2PF PD− − + −  (4) 

  

 

The above formula is explained as follows. First, calculate PF (Probability of False Alarm) and PD 

(Probability of Detection), and then test whether (PF, PD) is close to (0, 1) in terms of Euclidean distance. If 

yes, it means that the accuracy is higher. To the extreme, PF = 0 and PD = 1 imply the perfect accuracy [33]. 

e)  Update weight Dt(xi) of each data point xi. Then, calculate new weight Dt+1(xi) of each data point xi as 

follows: 

 

1

( ( )) ( )exp( ( ) )
( ) t i t i t t i i

t i

t

p x D x f x y
D x

Z

 
+

−
=

 
(5) 

 

where Zt is a normalization factor so that the total sum of all Dt+1(xi) is equal to 1. 

After T subclassifiers f1, f2, …, fT are obtained, construct a strong classifier H whose final forecast result 

is calculated according to the following ensemble of T weak subclassifiers: 

 

1
( ) ( ( ))

T

t tt
H x sign f x

=
=   (6) 

 

2) Stage 2: Concept drift detection based on the LFR 

After a strong classifier is trained at Stage 1, each testing data point is tested by this strong classifier, and 

the forecast result is obtained. This work supposes that the real label of each testing data point has been known. 

Hence, Stage 2 checks whether the forecast label and the real label are matched, to further detect whether a 

concept drift occurs. Stage 2 is based on the LFR, which has been shown to have outperformance in addressing 

imbalance data problems [6]. 

 

The LFR considers the four rates in the confusion matrix: TP (true positive) and FP (false positives) record 

the numbers of all positives that obtain positive and negative test outcomes, respectively; and TN (true negative) 

and FN (false negative) record the numbers of all negatives that obtain negative and positive test outcomes, 

respectively. Based on the four numbers, the four rates are calculated as follows: Ptpr = TP/(TP + FN); Ptnr = 

TN/(TN + FP); Pppv = TP/(FP + TP); Pnpv = TN/(TN + FN). 

 

In theory, if there were no false test outcomes, each of the four rates would be 1. That is, if the data is stable 

and no concept drift occurs, each probability approaches to 1; otherwise, it starts to be less than 1. The flowchart 

of the LFR is given in Fig. 4, which is detailed as follows. After a data point is tested by the ensemble model 

trained at Stage 1, we have the test outcomes and the real label. Hence, if we let * denote any of {tpr, tnr, ppv, 

npv}, the four rates P  and the modified rate R  are calculated. Then, the warning and drift bounds are 

calculated. If R  exceeds the warning bound, then the ‘warning level’ is enabled.  Then, check if ‘warning level’ 

is enabled. If true, store the data point. That is, once we enter the ‘warning level’, the data points after this level 

are stored for training a new classifier. Then, check if R* exceeds the drift bound. If true, go to Stage 3; 

otherwise, check if it is too long at the ‘warning level’. If true, the ‘warning level’ is disabled.  
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Fig. 4: Flowchart of concept drift detection based on the LFR. 

 

3) Stage 3: Drift adaptation based on Dynamic AdaBoost.NC 

After a concept drift occurs, it implies that the strong classifier trained at Stage 1 performs worse. Remind 

that the Dynamic AdaBoost.NC trains a strong classifier consisting of T weak subclassifiers f1, f2, …, fT in 

which each subclassifier fi is assigned to a weight i, which represents the accuracy of the subclassifier. 

Therefore, this work establishes a new strong classifier by combining the strong classifier trained at Stage 1 

(i.e., before the drift) and the strong classifier trained by the data points stored from the warning level to the 

drift level (i.e., after the drift). As shown in Fig. 5, this new strong classifier consists of one weak subclassifier 

from the strong classifier at Stage 1 and (T – 1) weak subclassifiers from the strong classifier trained after the 

drift. The new strong classifier is used to test the later data points.  

 

Fig. 5: Illustration of generating a new strong classifier at Stage 3. 
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B.DAMSID ensemble learning algorithm 

The DAMSID ensemble learning algorithm is shown in Algorithm 1.  

 

Algorithm 1. DAMSID 

Inputs: 

Initial ensemble learning model: initial_ensemble 

Offline ensemble learning: ensemble 

LFR drift detection method: DetectDrift 

Combine old and new ensembles in adaption: ensemble_combine 

Data stream: D 

  

1: mode ← 1 (1: before drift, 2: over warning level, 3: after drift) 

2: h ← initial_ensemble 

3: while D is not empty do 

4:  d ← next data point from D 

5:  if mode = 1 then 

6:   prediction ← h(d) 

7:  end if 

8:  mode ← DetectDrift(d, prediction) 

9:  if mode != 1 then 

10:   afterdriftData = afterdriftData  {d} 

11:  end if 

12:  if mode = 3 then 

13:   new_ensemble  ← ensemble(afterdriftData) 

14:   h ← ensemble_combine(h, new_ensemble) 

15:   mode ← 1 

16:   num_afterdriftData ←  

17:  end if 

18:  output d, prediction 

19: end while 

 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

This section introduces implementation of the proposed DAMSID, and evaluates performance of the 

DAMSID. This work further implements the ensemble learning algorithm of the DAMSID with three layers 

of classifiers: super-strong, strong, and weak classifiers, in which each higher-layer classifier is an ensemble 

of lower-layer classifiers, i.e., the forecast result of the higher-layer classifier is obtained by a weighted voting 

sum of the results of lower-layer classifiers. In the experiments, the lowest-layer classifiers apply three types 

of classifiers: linear discriminant analysis (LDA), naïve Bayes (NB), and support vector machine (SVM). 

 

A.Experimental data 

The experimental dataset is generated based on the method of generating the SEA dataset [34]. The dataset 

has 60,000 points, each of which has three attributes and one real class label. The data is time series. Three 

concept drifts occur at the points of 15,000, 30,000, and 45,000, respectively. This work is referred to [24] to 

generate the dataset with various levels of imbalance ratios (i.e., the ratios of the minority class over majority 

class): 30%, 20%, 10%, and 5%, and the corresponding datasets are denoted by IR7, IR8, IR9, and IR9.5, 
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respectively. 

 

Among the 60,000 data points of a dataset, the proposed DAMSID uses the first 1,000 data points to train 

the initial strong classifier, and then uses this strong classifier to test the remaining 59,000 data points, during 

which if a concept drift is detected, the classifier is adapted. 

 

B.Analyzing the DAMSID with and without SMOTE 

The results using the proposed DAMSID with and without SMOTE are shown in Figs. 6 and 7, respectively, 

in which the vertical axis represents the overall accuracy (i.e., the rate of the total correct outcomes over the 

total number of data points considered so far); the horizontal axis represents the number of data points 

considered; data points from –1,000 to 0 are the initial training dataset; concept drifts occurs at points 14,000, 

29,000, and 44,000. From Figs. 6 and 7, the accuracy of the results with SMOTE increases for the IR7 and IR9 

datasets, but decreases a bit for the IR8 and IR9 datasets.  

 

Fig. 6: Results using the DAMSID with SMOTE on four datasets. 

 

Fig. 7: Results using the DAMSID without SMOTE on four datasets. 

 

The confusion matrices of the results using the DAMSID with and without SMOTE on the first 14,000 testing 

data points (i.e., those before the first concept drift) of four datasets are shown in Table 1. 

 

Table 1.Comparison of the confusion matrices of the results using the DAMSID with and without SMOTE 

on four datasets with different imbalance ratios. 
 Without SMOTE With SMOTE 

Predict result True label Predict result True label 

1 –1 1 –1 

IR7 1 360 0 1 409 0 
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–1 336 13304 –1 287 13304 

IR8 1 2289 0 1 2625 67 

–1 526 11185 –1 190 11118 

IR9 1 876 0 1 1245 32 

–1 516 12607 –1 148 12575 

IR9.5 1 360 0 1 409 0 

–1 336 13304 –1 287 13304 

 

In addition to the overall accuracy, this work is more concerned about the accuracy of testing the data points 

in the minority class (i.e., those with label ‘1’ in Table 1). From Table 1, all the results with SMOTE have a 

better accuracy in the minority class, and remarkably reduce the number of false negatives. On the other hand, 

the results with SMOTE have false positives. The reason is that the SMOTE creates artificial data points of the 

minority class, so that it increases the ability of forecasting the minority class, but decreases the ability of 

forecasting the majority class. Therefore, it is concluded that the SMOTE can effectively assist the DAMSID 

in increasing the accuracy of forecasting the minority class.  

 

C.Analyzing the LFR in the DAMSID 

This subsection analyzes the effect of the LFR in the DAMSID. Because the LFR has been shown to perform 

well in addressing imbalance data, this subsection analyzes the LFR in the datasets with two extreme degrees 

of data imbalance: IR7 and IR9.5. Hence, we run 70 times of the DAMSID on the IR7 and IR9.5 datasets, and 

record the number of detecting concept drifts for each 1,000 data points in the 70 times of ruining the DAMSID, 

as shown in Figs. 8 and 9, in which the height of each bar represents the number of detections for each 1,000 

data points. The statistics of correct and fault detections are given in Table 2. Because the DAMSID collects 

1,000 data points for later training before entering the drift level, the correct detections should occur during the 

1,000 data points after drifts, i.e., 14,000–16,000, 29,000–31,000, and 44,000–46,000. Hence, the two bars 

responded to these ranges are shaded in Figs. 8 and 9. 

 

 

Fig. 8: The frequency of detecting concept drifts running 70 times of the DAMSID on the IR7 dataset. 
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Fig. 9: The frequency of detecting concept drifts running 70 times of the DAMSID on the IR9.5 dataset. 

 

From Figs. 8 and 9, the length of shaded bars is relatively longer, i.e., concept drifts have a high probability 

to be detected. From Table 2, the number of fault detections on the IR7 dataset is double that on the IR9.5 

dataset. It is speculated that the LFR performs better in the datasets with a higher imbalance degree. 

 

Table 2. Statistics of detecting concept drifts running 70 times of the DAMSID on the IR7 and IR9.5 

datasets. 

Dataset 
Correct 

detections 

Fault 

detections 

Total 

detections 

IR7 180 350 530 

IR9.5 179 166 345 
 

D.Analyzing the results using the DAMSID 

In addition to the overall accuracy, another important measure is the concept accuracy, which is the rate of 

the total correct outcomes over the total number of data points considered so far after a concept drift. The 

results of overall and concept accuracies using the DAMSID on the four datasets are shown in Figs. 10–13, 

in which the overall accuracies of the results for the IR7, IR8, IR9, and IR9.5 datasets show outperformance 

(96.01%, 96.3%, 95.6%, and 97.02%, respectively). All the results show that all concept drifts can be 

detected within 1,000 data points after drifts. 

 

From Figs. 8 and 9, the length of shaded bars is relatively longer, i.e., concept drifts have a high 

probability to be detected. From Table 2, the number of fault detections on the IR7 dataset is double that on 

the IR9.5 dataset. It is speculated that the LFR performs better in the datasets with a higher imbalance degr 

 

 

 
Fig. 10: Results of overall and concept accuracies using the DAMSID on the IR7 dataset. 
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Fig. 11: Results of overall and concept accuracies using the DAMSID on the IR8 dataset 

 

 
Fig. 12: Results of overall and concept accuracies using the DAMSID on the IR9 dataset. 

 

 
Fig. 13: Results of overall and concept accuracies using the DAMSID on the IR9.5 dataset. 

 

To realize the outcomes of minority and majority classes for each concept, we analyze the confusion matrices 

of the results using the DAMSID on four concepts of the four datasets shown in Tables 4–7, in which the TPRs 

for the IR7, IR8, IR9, and IR9.5 datasets are 98%, 97%, 99.1%, and 94%, respectively. Hence, the DAMSID 

is shown to perform well in forecasting minority-class data in imbalance data problems. In addition, the TPR 

decreases as the imbalance rate increases. The reason is speculated that the amount of minority-class data (i.e., 

label ‘1’) decreases. 

 

Table 4. The confusion matrices of the results using the DAMSID on four concepts of the IR7 dataset. 

 

Real label 

Concept 1 Concept 2 Concept 3 Concept 4 

1 –1 1 –1 1 –1 1 –1 

Predict 
1 4174 294 4494 516 4313 80 4492 1058 

– 24 9508 6 9984 187 10420 8 9442 
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Table 5. The confusion matrices of the results using the DAMSID on four concepts of the IR8 dataset. 

 

Real label 

Concept 1 Concept 2 Concept 3 Concept 4 

1 –1 1 –1 1 –1 1 –1 

Predict 

1 2768 183 2992 940 2872 145 2878 603 

–

1 
47 11002 8 11060 128 11855 122 11397 

 

Table 6. The confusion matrices of the results using the DAMSID on four concepts of the IR9 dataset. 

 

 

Real label 

Concept 1 Concept 2 Concept 3 Concept 4 

1 –1 1 –1 1 –1 1 –1 

Predict 

1 1381 608 1493 669 1291 25 1500 1114 

–

1 
12 11999 7 12831 209 13475 0 12386 

 

Table 7. The confusion matrices of the results using the DAMSID on four concepts of the IR9.5 dataset. 

 

Real label 

Concept 1 Concept 2 Concept 3 Concept 4 

1 –1 1 –1 1 –1 1 –1 

Predict 

1 655 77 655 847 642 23 731 640 

–

1 
41 13227 9 13407 108 14227 19 13610 

 

V. CONCLUSION 

With development of the IIoT, deployment of a large-scale number of sensors in manufacturing industries 

can continuously collect machine conditions (which are big data). CBM analyzes the machine conditions to 

predict the time when the machine starts to perform abnormally and to replace or maintain it in advance. 

Because most classifiers can be trained in an offline way, this work has proposed a DAMSID ensemble learning 

algorithm based on offline classifiers to address the CBM with concept drifts and imbalance data. The 

DAMSID improves the concept detection method by the Dynamic AdaBoost.NC with SMOTE method, 

improves the concept drift detection method by LFR, and includes a novel drift adaption method. Experimental 

results show that the proposed DAMSID can successfully detect all concept drifts; the accuracy rate of the 

forecast results using the DAMSID can achieve over 90%; the overall accuracy rate for the extreme imbalance 

data (IR9.5 dataset) can arrive at 97.02%; the accuracy rate for the minority-class data can achieve over 94%. 

 

From experimental trials, the performance of experimental outcomes significantly depends on the data 

sampling. Therefore, a line of future work is to propose a novel data sampling in the DAMSID. It is also of 

interest to improve the computing efficiency of the algorithm. In addition, it is interesting to design a robust 

ensemble learning method to adapt to various degrees of data imbalance. And, in practice, unlabeled or 

semilabeled data is common, and hence it is of crucial to investigate the classification for these data types.  
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